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Abstract

In over-subscription planning (OSP), the set of goals is not
achievable jointly, and the task is to find a plan that attains
the best feasible subset of goals given resource constraints.
Recent classical OSP algorithms ignore the uncertainty inher-
ent in many natural application domains where OSPs arise.
And while modeling stochastic OSP problems as MDPs is
easy, the resulting models are too large for standard solution
approaches. Fortunately OSP problems have a natural two-
tiered hierarchy, and in this paper we adapt and extend tools
developed in the hierarchical reinforcement learning commu-
nity in order to effectively exploit this hierarchy and obtain
compact, factored policies. Typically, such policies are sub-
optimal, but under certain assumptions that hold in our plane-
tary exploration domain, our factored solution is, in fact, opti-
mal. Our algorithms work by repeatedly solving a number of
smaller MDPs, while propagating information between them.
We evaluate a number of variants of this approach on a set
of stochastic instances of a planetary rover domain, showing
substantial performance gains.

Introduction
Over-subscription planning problems (OSPs)1 (Smith 2004)
are classical planning problems in which the given set of
goals is not achievable jointly. The task is to find a plan
that achieves some optimal feasible subset of the goal set
given resource constraints. OSP is a natural generalization
of classical planning problems with their fixed goal set, and
they arise in numerous important application domains. In-
teresting and useful examples of OSPs abound, including
service scheduling, logistics problem with constrained re-
sources, and more generally, problems that involve multi-
ple sub-tasks constrained by shared resources. This paper
is motivated by our work on the planetary exploration do-
main, and in particular, our desire to scale-up algorithms for
planetary rover problems.

There are different formulations of this problem, some
in which goals have rewards and actions have costs,
such as (Sanchez and Kambhampati 2005), and some in
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1We use “OSP” both as an abbreviation of “over-subscription

planning”, and “over-subscription planning problems”.

which qualitative metrics are used to assess different sub-
goals (Brafman and Chernyavsky 2005). This work adopts
a decision theoretic approach where the goal is to maximize
the (expected) utility of the goals achieved under the con-
straints imposed by limited resources.

Many application domains in which OSPs are used, and
planetary exploration in particular, exhibit large amounts of
uncertainty. For instance, the effects of the actions per-
formed by planetary rovers are stochastic, with resource
consumption, distance travelled, etc., being affected by vari-
able unpredictable features of the environment, such as
weather and terrain. It is thus natural to consider stochas-
tic OSPs (SOSPs), i.e., OSPs in which the effects of actions
are stochastic. Such OSPs are modelled naturally as Markov
Decision Processes (MDPs) (Puterman 1994). MDPs natu-
rally capture both the stochastic effect of actions as well as
the ability of multiple events/states to provide value to the
agent. However, the state-space of the resulting MDP grows
exponentially with the number of possible goals in the prob-
lem. These goals are not independent, often indirectly linked
via their consumption or use of shared resources, such as
energy, time, or shared means of transportation. Optimally
solving such MDPs within a reasonable time using current
methods is infeasible given a large set of possible sub-goals.

As observed by Smith (2004), OSPs lend themselves to
a natural two-level hierarchical model. At the top-level, the
problem is one of scheduling the different sub-tasks. For in-
stance, in planetary rover exploration, decisions at this level
involve the choice of the next location to visit, the rocks to
track or stop tracking, and possibly the instruments to warm-
up. The sub-tasks appear at the lower level of this hierar-
chy, e.g., performing experiments and collecting data at a
particular site. The main contribution of this paper is an
approach to solving stochastic OSPs that exploits this hier-
archy and repeatedly solves substantially smaller MDPs that
describe each sub-task. As our experimental results indicate,
as the sub-tasks increase in complexity and as their number
increases, our algorithm becomes considerably faster than
similar algorithms that solve the flat representation of the
domains. Moreover, we show that under a certain assump-
tion that applies to the type of domains that motivate this
work – the solution we obtain is both compact and optimal.

Our work is closely related to work on hierarchical re-
inforcement learning (Dietterich 2000; Andre and Russell
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2002). We farther develop solution techniques that were dis-
cussed in the past, e.g., in (Andre 2003). This line of work
concentrated on learning both because domain models are
not always available, and also because model-based methods
must compute transition functions for macro operators (see
below) – a task considered computationally expensive (An-
dre 2003). Indeed, we have found naive macro computation
extremely expensive, and one of our contributions is to show
that with more clever methods and with particular problem
structure, macros can be computed quite fast. Unlike most
past work, our techniques are also able to generate globally
optimal policies under certain assumptions. Overall, the ap-
proach we present is more unified in its treatment of abstrac-
tion and hierarchy – the two are intertwined, features a new
factored variant of the off-line policy iteration algorithm as
opposed to the on-line algorithms used in Hierarchical RL,
and offers fast macro computation methods. We evaluate
these algorithms on a toy model of the planetary rover do-
main.

Problem Formulation
We briefly review the Markov Decision Process (MDP)
model. We then explain how we recast stochastic OSPs as a
special class of MDPs.

Factored MDPs
A Markov Decision Process (MDP) is a four-tuple
〈S, A, T, R〉, where S is a set of states, A is a set of actions,
T : S × A × S → [0, 1] is the transition function which
specifies for every two states s, s′ ∈ S and action a ∈ A
the probability of making a transition from s to s′ when a is
executed, and R : S ×A× S → R is the reward function.

We are interested in factored MDPs which have the form
〈X, A, T, R〉. Here X is a set of state variables, and A, T, R,
are as before. The variables in X induce a state space, con-
sisting of the Cartesian product of their domains. Typically,
it is assumed that the transition function T is also described
in a compact manner that utilizes the special form of the
state space, such as dynamic Bayes net (Dean and Kanazawa
1993) or probabilistic STRIPS rules (Hanks and McDermott
1994). In this paper, we do not commit to any particular
action description. However, we implicitly assume that it
is easy to identify the relevant variables with respect to an
action a ∈ A. This is the set of variables whose value can
change when a is executed, as well as those variables that
affect the probability by which these variables change their
value. We use inf (a) to denote this set of variables.

Finally, we are interested in problems with a concrete ini-
tial state. Thus, we slightly modify the definition of an MDP
to 〈X, A, T, R, I〉, where I is a concrete initial state, i.e., an
assignment of value to each variable in X .

Stochastic OSPs The term oversubscription planning
refers to classical planning problems in which we have a set
of sub-tasks, or sub-goals, that cannot be achieved jointly
because of resource limitation. A weight, or value, is asso-
ciated with each sub-goal, and the task is to generate a plan
that achieves the maximal feasible set of sub-goals with re-
spect to total weight. In this work, we assume that different

goals have different utility and we aim at maximizing the
expected utility of the plan.

The loose coupling of goals/sub-tasks plays an important
role in our approach, as well as in other approaches to OSPs
such as (Smith 2004). It is assumed that sub-tasks are pretty
much independent, coupled only through their effect on a
number of shared state variables which includes, but is not
limited to, the limited resources (such as time, energy, mem-
ory, etc.). Aside from their effect on shared variables, ac-
tions affect only variables local to the task. The fact that sub-
tasks are localized makes it easy to decompose OSPs. In-
deed, domain decomposition methods, and in particular, the
general method proposed by (Amir and Engelhardt 2003)
naturally leads to a 2-tiered hierarchical model of OSPs. The
leaf nodes in this hierarchy describe the local variables and
actions for each particular task, as well as those global pa-
rameters required to perform them. The root node describes
the global parameters and is in charge mostly, but not only,
of selecting the next task to perform. The root and each
of its children share variables, but each sub-process has its
own actions. We assume such a decomposition as part of the
input of our problem. We refer the reader to (Amir and En-
gelhardt 2003) for more details on how such decompositions
can be formed automatically in classical planning problems.
These ideas (but not the associated planning algorithms) ex-
tend naturally to MDPs, and they motivated our formulation
of the problem.

A Stochastic Over-subscription Planning problem
(SOSP) is a set {M0, . . . , Mn} of factored MDPs, where

• Mi = 〈Xi, Ai, Ti, Ri, Ii〉.

• Xi

⋂
Xj ⊆ X0 for all i > 0, j > 0 such that i 6= j. This

is called the running intersection property.

• Ai

⋂
Aj = ∅ for all i 6= j.

• Each Xi : i > 0 contains a special boolean fluent Donei

such that Donei ∈ X0 and Donei /∈ Xj for j > 0, j 6= i.

• Ri is 0 everywhere, except for triples of the form (s, a, s′)
such that Donei is true in s′ and not in s.

• For every i > 0, no action can change Donei from true
to false.

• The initial states Ii agree on shared variables.

The requirement that actions belong to a single sub-process
and that initial states agree on shared variables implies that
M = 〈X, A, T, R, I〉, where X =

⋃
Xi, A =

⋃
Ai,

R =
∑

Ri, and I =
⋃

Ii is an MDP in which for every
ai ∈ Ai we have that inf (ai) ⊆ Xi. Thus, a SOSP is simply
an MDP with a special structure. The fact that rewards are
only obtained when Donei becomes true, and that Donei

cannot become false, gives us the type of one-time reward
for accomplishing some sub-task associated with OSPs. In-
deed, the structure of SOSPs is closely related, and general-
izes, the structure reflected in the Orienteering Problem rep-
resentation of (Smith 2004). And it is this special structure
– together with one additional assumption discussed later –
that we wish to exploit. Note, however, that because X0

contains one Donei fluent for every i > 0, the state space
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of M0 remains exponential in n, but it is still much smaller
than the original space with its O(2

P
i
|Xi|).

The sub-process M0 is called the root process. The sub-
processes M1, . . . , Mn are called the child (or leaf) pro-
cesses. For each set of process variables Xi, we define:

• X̄i = Xi ∩ X0 are the separator (shared) variables be-
tween M0 and Mi.

• X̃i = Xi −X0 are the private variables of Mi.

• X0−i = X0 −Xi is the difference of M0 and Mi.

• The set of private variables of M0 is defined as X̃0 =
X0 −

⋃n
i=1 Xi =

⋂n
i=1 X0−i.

As we noted above, the state space of factored MDPs is the
Cartesian product of their domains. Thus, we can naturally
define various classes of states (where we assumed Boolean
variables to simplify notation): S = 2X , Si = 2Xi , S̄i =

2X̄i , S̃i = 2
eXi , S0−i = 2X0−i . Since, the sets X̃i (i ≥ 0)

and X̄i (i ≥ 1) constitute a partition of X , each Markov
state s ∈ S can be decomposed in various ways, such as
s = (s̃0, s̄1, s̃1, . . . s̄n, s̃n), s = (s0, s̃1, . . . s̃n) and s =
(s̃0, s1, . . . sn). Similarly, we will use the notations s0 =
(s0−i, s̄i) ∈ S0 = S0−i × S̄i and si = (s̄i, s̃i) ∈ Si =

S̄i × S̃i.

Policies
So far, we have not explicitly said what we want to do with
our special MDP. Typically, given an MDP, one seeks a pol-
icy, i.e., a mapping from states to actions, that maximizes
some function of the reward stream. We would like to max-
imize the expected sum of rewards – this criteria is well de-
fined because we can at most get rewarded n times in our
model. However, we want to obtain this maximal reward us-
ing a compact policy that reflects the structure of the prob-
lem. Intuitively, this policy would start with M0’s policy
which basically decides which sub-goal to achieve next, and
then for each sub-goal, we would follow the policy of the
corresponding Mi.

In the simplest case, we define a factored policy to be
the sequence 〈µ0, µ1 . . . , µn〉, where µ0 : S0 → A0 ∪
{µ1, . . . , µn}; and µi : Si → Ai ∪ {Abort}, i > 0. This is
to be understood as follows: the root process can either exe-
cute a local primitive action a0 ∈ A0, or call a sub-process
through the macro-action µi. Each local policy µi specifies,
in each sub-process state, a choice between an action private
to that process, and passing control back to the root pro-
cess through the Abort action. In this work, we consider the
case where the root process may use several different macro-
actions µi for each sub-process Mi. More precisely, the
root process has a different macro-action µi[s0−i] : Si →
Ai ∪ {Abort} for each vector s0−i ∈ S0−i, and µi[s0−i]
may be used only in states s0 = (s0−i, s̄i) ∈ S0. The rea-
sons for this choice will become apparent in the following.

A factored policy uses only part of the state space to make
action choices. For instances, choices of actions in S0 de-
pend only on the root process variables X0. Thus, when re-
stricting oneself to a factored policy, one may lose the ability
to generate an optimal policy because one’s decision ignores

some part of the state space. This is why weaker notions
of optimality, such as recursive and hierarchical optimality
were introduced in the field of hierarchical reinforcement
learning (Dietterich 2000; Andre and Russell 2002). In this
paper, we show that under a certain assumption that applies
to the type of domains that motivate this work, there exist a
factored policy that is globally optimal.

The Reset Assumption
The extra property we introduce is the reset assumption. The
intuitive idea is simple: every time we move control to one
of the non-root sub-processes, the value of its private vari-
ables changes back to their initial value. This assumption ba-
sically means that we cannot start working on a task, move to
another, and then come back to the first task and find it in the
state we left it. Note that in general, it is restrictive. How-
ever, we believe it applies to a large sub-class of problems,
including our rover domain (see below). This assumption
may be modelled by adding to the Abort action the effect of
resetting the private variables of the current process to their
initial values. Note that the non-private variables of a sub-
process are not required to change in any particular way, and
that the reset assumption implies the local policy µi is appli-
cable only when all the variables in X̃i (for i > 0) have their
initial values. Finally, we mention a special case of the re-
set assumption, which we call the visit-once assumption. It
stipulates that each sub-task is attempted once only. This as-
sumption makes for a reasonable heuristic in many domains.

The Rover Application Domain
To illustrate these ideas, consider the problem of exploratory
rovers. In this problem an autonomous vehicle, the rover,
must visit a number of locations. Some locations contain an
item of interest, e.g., a rock on which the rover can perform
an experiment. A reward is obtained when an experiment
concludes successfully. There is no value to repeating a suc-
cessful experiment. Experiments usually involve instrument
placements, preparation of the rock (e.g., coring), and mea-
surements. Abstractly, the actions used at each of the loca-
tions are the same, e.g., extending the arm, placing this or
that instrument, stowing the arm, etc. However, in practice,
the transition functions for these actions depend on the posi-
tion, structure, and nature of the rock. Thus, we have differ-
ent instances of each instrument placement action for each
location. Actions may fail and their resource consumption
is uncertain.

We model the overall problem as follows: the root pro-
cess describes the global status of the problem: the rover’s
location, the set of targets currently tracked, the state of in-
struments, resource levels, and which experiments were suc-
cessful. The possible actions involve tracking different tar-
gets, navigating to different locations, and warming up in-
struments. The sub-processes describe the state of the rover
and the experiment at a particular rock, as well as the part
of the global information that is relevant to this task, such
as resource levels. The actions correspond to the local ma-
nipulation of the rover’s instruments. This decomposition is
illustrated for a simplified rover problem with two sub-tasks
in Figure 1.
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Navigate (*,*)

Trackstart (*)

IP(R2)

TakePicture(R2)

IP(R1)

TakePicture(R1)

HavePicture(R1)

DoneIP(R1)

HavePicture(R2)

DoneIP(R2)

Tracked(R1)

At(R1) e = 0
e = 1
e = 2
 ...

At(R2)

Tracked(R2)

At(Start)

At(Waypoint)

Resources:

PSfrag replacements

X̃0:

M0

A0:

X̃1:

X̄1:

M1

A1:

X̃2:

X̄2:

M2

A2:

µ1[s0−1]

µ2[s0−2]

Done1 Done2Abort
Abort

Figure 1: Hierarchical decomposition of a simplified rover
problem: a root process M0 navigates among two rocks, R1
and R2, and schedules two corresponding sub-processes M1

and M2 (IP stands for “Instrument Placement”). The hier-
archy encapsulates the natural structure of the domain: the
discretized resource is shared among all processes, and the
part of the state specific to rock i > 0 is either private to Mi

or shared by M0 and Mi. The solving of Mi enriches the
root process with a macro action µi that is an arm placement
with conditions for aborting.

As mentioned, the reset assumption holds true for our cur-
rent rover model, because the rover must have all of its in-
struments on board, and its arm stowed before it can move.
Thus, we cannot leave an instrument in one location once
we move to another location. Moreover, actions of prepar-
ing the rock for a measure, such as coring the rock, have to
be re-done if we abort this rock before completing the mea-
sure, because it is not possible to put the rover arm exactly
at the place it was when the rock was cored. So, all interme-
diate work towards the goal is lost once we move to another
rock.

Algorithms
We now describe two algorithms for generating a factored
policy in an SOSP. The fundamental, and well-known idea
behind both algorithms is to repeatedly solve small parts
of the problem that correspond to different sub-processes.
What is new in our approach is the manner in which this is
done, by exploiting the special structure of SOSPs to gener-
ate an optimal policy and to efficiently compute the macro-
actions models. Our algorithms can be used with any MDP
solution method to solve the different sub-processes.

Macro-actions play an essential role in this technique.
Both algorithms augment the root domain with a macro op-
erator µi[s0−i], i > 0, s0−i ∈ S0−i, corresponding to exe-
cution of a local policy for the child domain Mi from states
s0 = (s0−i, s̄i) ∈ S0. This notation is used to empha-
size the fact that the actual policy over Si implemented by
the macro may depend on the value of the local variables
of M0. The macro-operators terminate with the children’s

local Abort action that returns the control to the root pro-
cess. Each macro plays the same role as an ordinary action
of M0.2 When we apply macro µi[s0−i], the value of s0−i

may not change. Thus, under the reset assumption, what
characterizes a macro is the probability of ending up with
some value of S̄i given that we started with another. There-
fore, macro-actions transition probability and rewards may
be expressed as functions of the variables in X̄i only. To
distinguish these actions from the primitive actions, we de-
note their reward function by Ri(s̄i, µi[s0−i], s̄

′
i) and their

transition function by Ti(s̄i, µi[s0−i], s̄
′
i).

In what follows, we assume for the sake of simplicity that
the macros terminate after a finite time. This does not fol-
low from our definition of SOSPs, nor is it essential – i.e.,
the algorithms and proofs below can be modified to handle
non-terminating macros (and some work without modifica-
tion). However, most domains we have in mind satisfy this
property, either because the sub-MDPs are really stochastic
shortest-path problems in which all actions have some posi-
tive probability of success (which implies the required prop-
erty), or because actions consume resources with a positive
probability (most typically with probability 1) and resources
are eventually exhausted.

The Sub-Process Pairs Algorithm
In the sub-process pairs algorithm, we combine each child
process with the root process, and solve them together. For
each i, we define an MDP M0+i with state space S0+i =
2X0∪Xi and action space

A0+i = A0 ∪Ai ∪
⋃

j 6=i;s0−j∈S0−j

µj [s0−j ] .

That is, the actions available are the primitive actions of M0

and Mi, plus all macro-actions for processes j 6= i.3 Tran-
sition probabilities and rewards for M0+i are directly de-
rived from the definition of the SOSP, and from the transi-
tion probabilities and rewards of macro-actions µj , j 6= i.
Bellman optimality equation for M0+i may be written as:
V0+i(s0+i) = max


 max

a0∈A0




∑

s′
0
∈S0

R0(s0, a0, s
′
0) + T0(s0, a0, s

′
0)V0+i(s

′
0, s̃i)


 ;

max
ai∈Ai




∑

s′
i
∈Si

Ri(si, ai, s
′
i) + Ti(si, ai, s

′
i)V0+i(s0−i, s

′
i)


 ;

max
j 6=i




∑

s̄′
j
∈S̄j

Rj(s̄j , µj [s0−j ], s̄
′
j)+

Tj(s̄j , µj [s0−j ], s̄
′
j)V0+i(s0−j , s̄

′
j , s̃

0
i )









2A macro is actually a temporally extended action (Sutton et al.
1999). If we were to use a discounted reward criteria, we would
also need to model the expected duration of a macro. This would
slightly complicate things, but the theory is well understood.

3In this algorithm, the Abort action is not needed.
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where s0+i = (s0, s̃i) = (s0−i, si) = (s0−j , s̄j , s̃i).
The algorithm goes through a loop solving MDPs M0+i

in an arbitrary order until steady-state. While solving M0+i,
a new policy µ0+i : S0+i → A0+i is determined. Conse-
quently, the macro-actions for Mi are updated following

µi[s0−i](si) =

{
µ0+i(s0−i, si) if µ0+i(s0−i, si) ∈ Ai ,
Abort otherwise .

Here is the pseudo-code of the algorithm:

1: Initialize each macro µi[s0−i] to Abort everywhere.
2: repeat
3: for every sub-process pair M0+i do
4: Solve M0+i;
5: Update macro-actions µi[s0−i] based on the solu-

tion of step 4;
6: until no sub-policy has changed

Algorithm 1: Sub-Process Pairs Algorithm

Theorem 1. Under the reset assumption, the sub-process
pairs algorithm converges to a globally optimal policy in a
finite number of iterations.

Proof. Given a fixed strategy for breaking ties, the behav-
ior of the algorithm does not depend on the technique used
to solve each M0+i. Therefore, the general result will be
established if we prove the theorem in the particular case
where Policy Iteration (Puterman 1994) is used at step 4 of
the algorithm. The reset assumption implies that with each
local state (s0−i, si) of M0+i, only a single global state is
consistent (reachable). This is the state where all variables
private to a process Mj , j 6= i have their initial value:

G(s0−i, si) = (s0−i, s̃
0
1, . . . , s̃

0
i−1, si, s̃

0
i+1, s̃

0
n) ∈ S .

The reason being that whenever we are in some sub-process,
all other sub-processes must be in their initial local state.
Thus, if we associate every local state of a sub-process with
the corresponding reachable global state, we can view steps
performed on a sub-process state (i.e., policy improvement
and policy evaluation) as being performed in the global state.
If we show that these steps converge in the global state
space, we are done. Indeed, our algorithm is emulating a
version of standard policy iteration on the complete state-
space. To see this, recall that policy iteration works no mat-
ter how many states are updated in the policy improvement
stage (as long as at least one of the possible improvements
is performed) (Littman et al. 1995). The only condition is
that each policy evaluation step produces an accurate value
function. Moreover, after each stage of policy evaluation in
M0+i, the value function of that process-pair accurately rep-
resents the global value function over all states where sub-
processes Mj , j 6= i are in their initial condition:

V0+i(s0−i, si) = V (G(s0−i, si)) .

This follows from standard results on planning with tempo-
rally abstract actions (Sutton et al. 1999). Note that the
value function following the local policy evaluation phase

of M0+i is not accurate in those states where a sub-process
Mj , j 6= i is not in its initial states:

V0+j(s0−j , sj) 6= V (G(s0−j , sj)) .

This is because the macro-actions µi[s0−i] may have
changed and V0+j has not been update in the mean time.
Fortunately, it is good enough, as for each sub-process pair
M0+i, we only update the actions in S0+i, and we “jump
over” all states not in S0+i using macro-actions parameters
Tj and Rj , j 6= i. In summary, the algorithm may be seen as
repeatedly performing: (i) policy evaluation over all global
states of interest, and (ii) policy improvements only in global
states where all sub-process Mj , j 6= i are in their initial
condition, until no further improvement is possible. Then
the algorithm moves to the next process-pair. The algorithm
terminates after a finite number of steps when no sub-policy
has changed over one iteration. At this point, the value func-
tion of each sub-process pair accurately represents the global
value function.

The Abort-Update Algorithm
The sub-process pairs algorithms accounts for the (weak)
coupling in between sub-tasks by always including the vari-
ables and actions of the root process when solving a sub-
task. The abort-update algorithm solves each process Mi,
i ≥ 0 independently of the root process and ensures the syn-
chronization in between sub-task by using different rewards
for the Abort action. Intuitively, the Abort action should
receive as a reward the value of the M0 state where we will
end-up after passing control back to the root. Therefore, we
use the value function for M0 to define the immediate re-
ward for aborting Mi, i > 0. While this is the high-level
story, the detailed picture is a bit more complicated. Con-
sider the abort action for Mi. The value of aborting depends
on what we can get from the other sub-processes. This is
exactly the value of the current M0 state. However, Mi can
see only the variables in X̄i, and not those in X0−i. Yet,
the value of aborting depends on both.This means that we
actually need to solve a version of Mi for each assignment
to X0−i because each such assignment would yield a poten-
tially different value for Abort.4

The abort-update algorithm cyclically solves sub-
processes Mi, i ≥ 0 until a steady-state is reached. The
Bellman equations of the root process is:

V0(s0) = max


 max

a0∈A0




∑

s′
0
∈S0

R0(s0, a0, s
′
0) + T0(s0, a0, s

′
0)V0(s

′
0)



 ;

max
i>0




∑

s̄′
i
∈S̄i

Ri(s̄i, µi[s0−i], s̄′i)+

Ti(s̄i, µi[s0−i], s̄′i)V0(s0−i, s̃
′
i)








4This is the prime motivation for using a different macro µi for
each s0−i ∈ S0−i.
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where s0 = (s0−i, s̄i), and the Bellman equation of a leaf
process is:

Vi[s0−i](si) = max


 max

ai∈Ai




∑

s′
i
∈Si

Ri(si, ai, s
′
i) + Ti(si, ai, s

′
i)Vi[s0−i](s

′
i)



 ;

V0(s0−i, s̄i)



 .

In the second equation, the term V0(s0−i, s̄i) represents the
reward for aborting. Once the MDP Mi[s0−i] is solved, the
macro-action µi[s0−i] is updated to the optimal solution of
this process. Here is the pseudo-code of the algorithm:

1: Initialize each macro µi[s0−i] to Abort everywhere.
2: repeat
3: Solve M0

4: for every sub-process Mi, i = 1, . . . , n do
5: for every assignment s0−i to X0−i do
6: Solve Mi[s0−i];
7: Update µi[s0−i] based on the solution of step 6;
8: until no sub-policy has changed

Algorithm 2: Abort-Update Algorithm

Theorem 2. Under the reset assumption, the abort-update
algorithm converges to a globally optimal policy in a finite
number of iterations.

Proof. We can re-use most of the arguments developed in
the proof of Theorem 1. First, it is sufficient to show that the
theorem holds when Policy Iteration is used at step 3 and
6. Second, under the reset assumption, each state s0 of M0

represents the single reachable global state

G(s0) = (s0, s̃
0
1, . . . , s̃

0
n) ∈ S ,

and each state of si of Mi[s0−i] represents the single reach-
able global state

G[s0−i](si) = (s0−i, s̃
0
1, . . . , s̃

0
i−1, si, s̃

0
i+1, s̃

0
n) ∈ S .

Therefore, the algorithm may be seen as working on the
set of reachable global states. Now, conversely to the sub-
process pairs algorithm, abort-update may not be seen as
an implementation of standard Policy Iteration in the global
state space. In particular, the value function at the end of the
policy evaluation stage of a process does not always repre-
sent exactly the value function of the global process. At the
end of the policy evaluation stage of M0, we have, as in the
sub-process pairs algorithm,

V0[s0] = V (G(s0)) .

This comes from the standard arguments on planning with
temporally abstract action. Then we move to process M1

and perform several iterations of policy evaluation followed
by policy improvement. At the end of the first stage of policy
evaluation, we still have the desired property:

V1[s0−1] = V (G[s0−1](s1)) .

This is due to the fact that the reward for aborting is equal
to the value of the root process, which is an exact represen-
tation of the global value function. However the policy im-
provement stage modifies the macro-actions µ1[s0−1], and
these changes are not propagated to the states of M0. There-
fore, at the second iteration of policy evaluation in M1, we
have

V1[s0−1] 6= V (G[s0−1](s1)) .

Therefore, the abort-update algorithm cannot be related to
standard Policy Iteration in the global state space. Fortu-
nately, we can establish a correspondence between the al-
gorithm and another global algorithm that is known to con-
verge. For the abort-update algorithm, we rely on the con-
vergence of Asynchronous Policy Iteration (Bertsekas and
Tsitsiklis 1997). In Asynchronous Policy Iteration, the pol-
icy evaluation and policy improvement steps are not syn-
chronized. That is, the policy evaluation step is not neces-
sarily carried until termination, and does not have to include
all the states of the problem. Value updates on some states
are interspersed with policy updates on some states. Bert-
sekas and Tsitsiklis (1997) show that this algorithm con-
verges to an optimal policy. With the correspondence es-
tablished between reachable global states and local states,
it is now apparent that our abort-update algorithm is emu-
lating a particular implementation of Asynchronous Policy
Iteration. Indeed, (Bertsekas and Tsitsiklis 1997)[p.33] ex-
plicitly mentions the use of asynchronous policy iteration on
a partitioned state space as a special case.

The possible benefit of the abort-update algorithm over
the sub-process pairs algorithm is that if the reward func-
tions for two values of X0−i are identical, we do not
need to recompute the policy for Mi. Another advantage
is that the cost per iteration can be substantially cheaper:
The cost per iteration of dynamic programming on state
space S is O(|S|2). Thus for the sub-process pairs algo-
rithms, the complexity of an iteration is O(|S0−i ∪ Si|2) =
O(22X0−i+2Xi); for the abort-update algorithm, we solve
Mi |S0−i| times, so the running time is O(|S0−i| · |Si|2) =
O(2X0−i+2Xi). So overall, each iteration of Abort-Update
is O(|S0−i|) times cheaper. As we will see later, our exper-
imental results validate this expectation of improved perfor-
mance.

Computing the Macro-Actions Parameters
One of the main steps in both algorithms is the computa-
tion of the macro transition probabilities Ti(s̄i, µi, s̄

′
i) and

expected reward Ri(s̄i, µi, s̄
′
i) for a given macro-action µi :

Si → Ai ∪ {Abort}.5 This section discusses the compu-
tation of Ti. Given that the reward is non-zero only if the
macro reaches the goal before completion, Ri is easily de-
duced from Ti.

Each macro defines a policy for its sub-process, which in-
duces a Markov chain on Si. There are well known methods
for computing the state arrival probability in such cases (Ke-
meny and Snell 1976). Since we have assumed that macros

5In this section we omit the argument [s0−i] in macro-actions,
since the computation is the same for all macro-actions.

126



complete in finite time with probability 1, this Markov chain
is absorbing. The absorbing states are the states where
Abort is the optimal action (which includes the states where
the goal is achieved). All the states that are non absorbing
are called transient states. The transient states form one or
several strongly connected components. If there are several
such components, we say that the chain is structured. There
is a natural ordering of the strongly connected components:
every trajectory starts in a component and move irreversibly
from component to component until it gets absorbed in an
absorbing state. Assumptions on the planning domain deter-
mine the structure of the chain. For instance: (i) if resources
are always decreasing or constant, then each resource level
defines a strongly connected component; (ii) if, moreover,
every local action may only advance the sub-task towards
its goal or leave it unchanged (failure), then all loops of the
chain are self-loops, and every transient state constitutes a
different strongly connected component. The later case ap-
plies to the toy rover problem used in our simulations. This
structure may be used to accelerate macro parameters com-
putation.

We denote by Tµi
the transition matrix of the Markov

chain induced by µi. Given an initial value s̄i ∈ S̄i, there is
a single consistent initial state for the chain, (s̄i, s̃

0
i ) (this

follows from the reset assumption). The goal is then to
compute, limt→∞ T t

µi
((s̄i, s̃

0
i ), s

′
i) for all s′i ∈ Si such that

µi(s
′
i) = Abort. Then we have

Ti(s̄i, s̄
′
i) =

∑

s̃i∈S̃i

T∞µi
((s̄i, s̃

0
i ), (s̄

′
i, s̃

′
i)) .

In this work, we consider two techniques for computing
these values.

Forward technique: We denote by πt
i (si | s̄i) the proba-

bility of the chain being in state si after t transitions, know-
ing it started in state (s̄i, s̃

0
i ). It is easy to show that, for each

absorbing state sa
i , we have T∞µi

((s̄i, s̃
0
i ), s

a
i ) = π∞i (sa

i | s̄i)
and

π∞i (sa
i | s̄i) =

∑

si∈Si

Tµi
(si, s

a
i )

∞∑

t=0

πt
i (si | s̄i) .

So, it is sufficient to compute
∑∞

t=0 πt(si | s̄i) for each
transient state si, and then push all this probability mass to
the absorbing states in one step. Starting from the recursive
equation:

πt+1
i (si | s̄i) =

∑

s′
i
∈Si

Tµi
(si, s

′
i)π

t
i (s

′
i | s̄i) ,

we end up with the following system of linear equations with
one equation and one unknown for each transient state:

∞∑

t=0

Πt
i = Tµi

∞∑

t=0

Πt
i + Π0

i ,

which has a unique solution
∞∑

t=0

Πt
i = (I − Tµi

)−1Π0
i .

This system of linear equations can be solved analyti-
cally or by successive approximations. When the chain
has additional structure, each strongly component may be
treated independently as follows: We start by computing∑∞

t=0 πt
i (si | s̄i) for each si in the initial component. This

is a smaller system of linear equations with one equation
and one unknown for each state in the initial component.
Next, we push all this probability mass to the successor com-
ponents in one step, and solve each of them independently
of the others, again, dealing with smaller systems of linear
equations. Finally, when all strongly connected components
are solved, we push all the probability mass to the absorb-
ing states in one step. This is an application of standard
technique to accelerate Gaussian elimination in structured
systems of linear equation.

If all loops in the chain are self-loops, as in our toy
problem, then all systems of equations above have a sin-
gle unknown and a single equation which takes the form:∑∞

t=0 πt
i (si) = ci + Pr(si | si, µi)

∑∞
t=0 πt

i(si), where
Pr(si | si, µi) is the probability of a self-loop in si under µi

and ci is some constant. So
∑∞

t=0 πt
i (si) = ci/(1− Pr(si |

si, µi)). This allows for a very fast analytical computation
of macro-action parameters in our toy problem.

Backward technique: The backward technique computes
T∞µi

once and for all, and then extracts all the relevant infor-
mation from it. We start from the recursive equation:

T∞µi
(si, s

a
i ) =

∑

s′
i
∈Si

Tµi
(si, s

′
i)T

∞
µi

(s′i, s
a
i ) ,

where sa
i is an absorbing state of Si. Denoting Tµi

[sa
i ] the

vector of transition probabilities to the absorbing state sa
i ,

we end up with the following system of linear equations:

T∞µi
[sa

i ] = Tµi
[sa

i ] + Tµi
T∞µi

[sa
i ] ,

which has the following unique solution

T∞µi
[sa

i ] = (I − Tµi
)−1Tµi

[sa
i ] .

Again this system may be solved analytically or by linear ap-
proximations. If there is structure in the Markov chain, ac-
celerated Gausian elimination techniques lead to the follow-
ing backward algorithm: First, compute the transition prob-
ability T∞µi

(si, s
a
i ) for all states si in the last strongly con-

nected component(s) before absorbing states. This amounts
to solving a linear system of dimension lesser than the
above. Next, use this result to compute T∞µi

[sa
i ] in the sec-

ond to last component(s), and so on. Again, if all loops
are self loops, all systems have dimension one and we have
T∞µi

(si, s
a
i ) = ci/(1− Pr(si | si, µi)).

Comparison: If the transition matrix Tµi
is structured,

then the forward technique may be implemented without an
explicit representation of it (the algorithm manipulates only
occupation probabilities

∑∞
t=0 πt

i ). This can save consider-
able memory. On the other hand, the whole computation is
repeated once for each initial value of s̄i. Therefore, if the
chain can go through the same state si with two different ini-
tial values of s̄i, we implicitly compute the probability of the
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paths from si to an absorbing state several times (once for
each initial value of s̄i). However, this technique can iden-
tify early on that a state of the Markov chain is not reachable
given the initial condition, and thus focus the computation
only on the reachable states.

Conversely, the backward technique needs an explicit rep-
resentation of the transition matrix T∞µi

, which consumes
memory. It never performs duplicate computation, since
the probability of all paths leading to an absorbing state are
computed once and for all. However, it is not able to identify
that a state is not reachable given the initial conditions be-
fore the computation is complete, and so, it might compute
the probability of some path from an unreachable state to an
absorbing state.

Therefore, we have different trade-offs in terms of mem-
ory and execution time. In our simulations, we implemented
the analytical version of both techniques. Our results show
an advantage in terms of execution time to the forward tech-
nique in all the problem instances tried (there are five of
them). This shows that in our domain model, reachability
analysis saves us more time than what duplicate computa-
tions cost.

Empirical Results
We implemented and tested our two hierarchical algorithms
using Value Iteration to solve sub-processes, as well as stan-
dard (flat) Value Iteration, on an instance of the rover do-
main. Although this is a simplified instance of the real do-
main used at NASA (e.g., continuous variables were dis-
cretized and there are no concurrent actions) (Bresina et al.
2002), it remains a challenging problem for current MDP
solution algorithms. In this domain, sub-tasks representing
rocks of scientific interest are completed by performing a
number of successive actions. For instance, we must first de-
ploy the rover arm, then position the rock abrasion tool, core
the rock, position the camera, take the picture, and finally
stow the arm. These actions consume uncertain amount of
resources and may fail with positive probability. So, each
sub-process represent a single chain of states with possible
self-loops. At high level, we have to decide between nav-
igating to a location, and, if there is a target at the current
location, starting to work on that target. We varied the fol-
lowing parameters of the problem:
• the number of actions necessary to complete a sub-task,

which directly determines the number of states in which
each sub-process can be, but does not affect the size of the
root process;

• the range of discretized resources. As resources represent
shared variables, it determines the size of the separation
between each sub-process and the root process;

• the total number of locations and targets, which deter-
mines the size of the root process but does not affect the
size of each sub-process.
Simulation results are presented in Fig. 2 and 3. All the

graphs in these figures represent execution time (in seconds)
as a function of the resource range (the minimum resource
is 0 in all cases). Figure 2(a) presents the overall computa-
tion time of each algorithm on the reference problem, which

contains 5 sub-process with 6 states in each sub-process. In
this experiment, both the abort-update and the sub-process
pairs algorithm use the forward macro-action computation
technique. Not surprisingly, Fig. 2(a) shows that the flat
algorithm is largely outperformed by the hierarchical ones.
Moreover, in this problem as in the 4 other problems we
tested, abort-update exhibit better performances than the
sub-process pairs. Figure 2(b) was obtained with the same
problem instance, using the abort-update algorithm. It com-
pares the performance of the two techniques for computing
macro-actions parameters. It shows that the forward tech-
nique is slightly faster than the backward one. Again, qual-
itatively identical results were obtained with all problem in-
stances tried. Figure 3 illustrate how the abort-update with
forward macro-action computation is impacted by the size
of the problem. As we see from Fig. 3(a), the algorithm is
strongly influenced by the number of targets. This is where
exponential growth is to be expected, and although this is
much better than using a flat model, more work is needed to
help the algorithm scale up to large numbers of sub-tasks.
Finally, in Fig. 3(b) we see that the complexity of the local
sub-tasks has much less influence on the computational ef-
fort, which is quite encouraging. These results also show
that the solution of the root process is the dominant factor in
the complexity of the algorithm.

Summary and Related Work
We describe an approach for solving Stochastic Over-
subscription Planning problems. This approach exploits the
hierarchical structure of the problem and works by itera-
tively solving naturally defined sub-problems. Under the
reset assumption, these algorithm converge to a globally op-
timal policy.

Our method approach to SOSPs utilizes ideas that ap-
peared in some of the previous work on problem decompo-
sition studied in the area of decision-theoretic planning and
the hierarchical reinforcement learning literature. Our so-
lution approach starts with a hierarchical problem represen-
tation. (Amir and Engelhardt 2003) shows how such a de-
composition can be constructed automatically from a given
problem description for classical planning problems. We
have implicitly used and extended these ideas to stochastic
planning problems. Our domain imposes a natural two-level
hierarchy, but deeper tree decompositions are possible.

Given a decomposition of the domain, it would be nice
if the complexity of the solution algorithms would depend
on the size of the local sub-domains, rather than the global
state space. Unfortunately, as people have discovered in
the past, this is not true in general. This leaves two av-
enues of research: (1) finding factored policies that satisfy
weaker forms of optimality; and (2) finding additional re-
strictions that suffice for making factored policies optimal.
Much work, especially in hierarchical reinforcement learn-
ing has pursued the first option. Starting with the MaxQ al-
gorithm (Dietterich 2000), researchers have considered how
to find optimal policies of particular form – one that con-
forms to some hierarchy of sub-routines, or more generally,
to programs. The MaxQ algorithm yields a recursively op-
timal policy. This is a very weak local optimality guaran-
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Figure 2: Simulation results: algorithms comparison

tee, whose relation to global optimality is difficult to assess.
Later (Andre and Russell 2002) showed how to obtain the
more powerful level of hierarchical optimality. Hierarchical
optimality is optimality with respect to the restricted class
of policies that factors according to a pre-defined hierarchy.
Thus, the work in hierarchical RL starts with hierarchical
policy structure and attempts to find the best policies of this
form. The restriction on the policy paves the way for the use
of abstraction (because some aspects of the domains within
the special class of policies used are irrelevant). For hier-
archical optimality to hold, these “certificates” for these ab-
stractions must be provided explicitly by the user.

An important difference between that line of research and
our work stems from the fact that we assume a domain
model. With this model, a model-based decomposition is
used, and it induces both natural abstractions as well as a
natural factored form for the policy. We showed that un-
der certain assumptions, optimality can be maintained under
this factorization. It is interesting to note that (Andre 2003)
discussed similar assumptions in the context of proving the
convergence of a variant of Q-learning. Also, the hierar-
chical optimality of our solution follows immediately from
these results with respect to the class of factored policies we
seek even when the reset assumption is not satisfied.

As pointed out by (Guestrin and Gordon 2002), there
are two common ways of splitting a problem into simpler
pieces. Serial decompositions partition the state space into
sub-regions. The canonical examples are robot activities
involving navigation, where each sub-problem corresponds
to some region of space. Much of the work done to date
pursues this approach. A primary example, and one of the
first ones is (Dean and Lin 1995), and at a high-level, our
algorithm is very similar to their algorithm, i.e., we too
use an iterative approach that propagates information be-
tween sub-domains and converges to an optimal solution.

Another example is (Hauskrecht et al. 1998). The other,
less often discussed, type of decomposition is Parallel de-
compositions, where the state space is the product of the
sub-problems, rather than their union. Some examples of
such decompositions include (Guestrin and Gordon 2002;
Meuleau et al. 1998). Thus, the size of each problem is
exponentially smaller than that of the original problem, of-
fering much more potential savings than serial decompo-
sitions. As explained above, parallel decomposition tech-
niques are unlikely to yield optimal solution because deci-
sions are based on partial information. What we show is
that under the reset assumption, the parallel and the serial
decomposition are almost identical. Although syntactically
our decomposition is parallel, because of reachability con-
siderations, it is equivalent to a serial decomposition because
few states are really reachable.

Overall, this paper offers a unified and principled model-
based approach for using hierarchy and abstraction to tackle
stochastic OSPs. Although the worst-case complexity of our
algorithms remains exponential in the total number of do-
main variables, our initial experimental results show signif-
icant speed-ups in practice, indicating that this a promising
approach that is likely to scale up to realistic domain mod-
els. It also shows that macro computation, long considered
a very expensive steps, can be efficiently implemented given
sufficient domain structure. We also see great potential for
very fast approximately optimal algorithms (e.g., by ignor-
ing small distinctions between macros for different states)
and methods that make better use of reachability informa-
tion.
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